Micro Precision Manufacturing by Electroforming

world leader in micro-precision

Design specifications should always be assessed in the context of the overall design.

© 2023 Veco B.V.

veco

Veco Corporate Presentation 3

8 June 2025

Electroforming process

The Electroforming process can be concluded in a series of steps including Cleaning, Coating, Exposing, Developing, Deposition, and Harvesting

veco

8 June 2025 Veco Corporate Presentation 4

The substrate

Not just a detail

Many important parameters

- Roughness and gloss
- Dimensions
- Stiffness
- Expansion coefficient
- Conductivity
- Uniformity
- Cleanliness
- 'Activity'

Different substrates are conceivable

- Metallic substrates like stainless steel
- Flat substrate like glass with a conductive coating

2. Coating

3. Exposing

4. Developing

5. Deposition

6. Product harvesting

The coating processes

The role of photoresist

Many requirements

- **Thickness uniformity**: As uniform as possible, particularly in 'overgrowth products'.
- **Contrast**: Sharp difference in developing speeds of exposed and non-exposed areas.
- Sensitivity: High sensitivity is required for high throughput.
- **Stability**: Both thermal and chemical during electroforming process, but removeable after use.
- Adhesion: It should inhibit contact between the electrolyte and substrate.
- **Conductivity**: It acts as isolation layer during the electroforming process.

Many options

• Many ways to laminate the various types of photoresist (*e.g.* dry film; spin coating)

2. Coating

1. Cleaning

3. Exposing

4. Developing

5. Deposition

6. Product harvesting

The exposure processes

Chemistry behind the process

Positive photoresist

Base-insoluble sensitizer

Base-soluble photoproduct

1. Cleaning

2. Coating

3. Exposing

4. Developing

5. Deposition

6. Product harvesting

veco

8

The exposure processes

Exposure methods

1. Cleaning

2. Coating

- 3. Exposing
- 4. Developing

5. Deposition

6. Product harvesting

Developing

Potential structures after developing

1. Cleaning

2. Coating

3. Exposing

5. Deposition

6. Product harvesting

veco'

Electroforming

It all started in 1838

Electroforming was discovered in 1838 by Professor B.S. Jacobi . He electroformed copper upon an engraved copper plate, which he used as the cathode in a copper sulfate solution; In his report Academy (October 4th, 1838) he wrote:

"In the experiment with an engraved plate covered by a very thin layer of vegetable oil, it was possible to produce another copper plate on which even the <u>slightest imprints</u> on the original were produced with the <u>highest accuracy</u>".

1. Cleaning

2. Coating

3. Exposing

4. Developing

6. Product harvesting

Plating defined electroforming

1. Cleaning

2. Coating

3. Exposing

4. Developing

6. Product harvesting

Photo defined electroforming

2. Coating

3. Exposing

4. Developing

6. Product harvesting

1. Cleaning

Typical electroformed materials

Veco 84

Sulfamate

Property	Туре					Comparison Stainless Steel ²	
	Veco84	Sulfamate	Meta	HR-Ni	PdNi	SS 316L	SS 304
Tensile strength R _m [MPa] ¹	2200-2300	550-570	1060- 1080	1670- 1690	1750-1950	680-710	680-710
Yield strength R _{p0.2} [MPa] ¹	1900-2100	390-405	760-785	1100- 1300	1700-1750	290-330	290-330
Elasticity E [GPa]1	130-135	80-95	80-95	90-125	95-110	130-155	130-155
Elongation at failure [%]1	4-7	13-20	6-7	2-8	0-2	50-55	65-75
Hardness HV [N/mm2]3	620-660	185-200	330-340	460-470	520-530	175-185	180-200
Saturation magnetization M _s [µA m ² mg ⁻¹] ⁴	52-56	52-56	52-56	52-56	n.a. (paramagnetic)		
Chemical Purity [wt% Ni] ⁵	99,5	99,9	99,9	99,9	alloy		
Nickel Leaching [mg/L]6	0,056 +/- 0,008	0,072 +/- 0,014	0,053 +/- 0,036	0,075 +/- 0,028	0,025 +/- 0,016	0,000 +/- 0,000	0,000 +/- 0,000
Gloss type	High	Semi	High	High	High		
Gloss [%]	55% @ 20°	2% @ 60°	42% @ 20°	56% @ 20°	59% @ 20°		
Surface Roughness R _a [µm]	0.03	0.3	0.02	0.04	0.03		
Surface Roughness S _a [µm]	0.03	0.2	0.03	0.06	0.05		
$HV \ge 95\% + R_m \ge 95\%^7$	120 °C	160 °C	200 °C	200 °C	200 °C		
Bulk resistivity ρ [x10 ⁻⁷ Ω .m] ⁸	1.3 ± 0.1	0.8 ± 0.1	0.9 ± 0.1	1.0 ± 0.1	2.9 ± 0.1		

2. Coating

3. Exposing

4. Developing

6. Product harvesting

veco'

Multi-layer products

1. Cleaning

veco'

Coatings

Tailoring properties by application of (galvanic) coatings

Application of coatings to alter:

- Reflective properties
- Conductivity
- Chemical stability
- Mechanical stability
- Surface structure/properties

1. Cleaning

2. Coating

3. Exposing

4. Developing

6. Product

harvesting

Real life application examples

a day in the life

Coffee filters

Inkjet nozzle plates

Nebulizer plates

Sugar screens

veco'

Current trends in electroforming

- Higher precision
- True-multi layer capabilities
- Development of Functional materials

veco'

Application Example

Nebulisers: Life saving micro-precision parts.

The (bumpy) road from idea to product

Optimized Nebuliser Performance

Performance characteristics Vibrating Mesh Nebuliser Jet Nebuliser • Precise flow control • Ideal droplet size Low size distribution • Product life-time • Bio-compatible • Easy operation Power Fill cap connector Medication reservoir Vibrating mesh assembly veco

Perto

Proper ties

Vibrating Mesh Assembly

The beating heart of the device

The aperture plate

What is Critical to Quality?

- Dimensional characteristics
 - Average orifice diameter
 - Orifice diameter distribution
 - Orifice shape
 - Product thickness
- Materials characteristics
 - Elastic modulus/ductility
- Materials structure
 - Composition
 - Crystal orientation
 - Crystal size
 - Defect density

ANSYS modelling of Aperture Plate exit side

- Aperture plate displacement = 2.5 μm
- max stress = 95 MPa
- Natural frequency:

$$f = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$$

Prope

ties

Struc

ture

Altering materials structure and properties

As plated

• nm-sized grains, not visible by BSE

Annealed

• Grains visible, both fine and coarse

Distribution of coarse and fine grains after annealing

Desired state:

Fine-grained and randomly distributed

Undesired state: Coarse-grained with preferential orientation

Prope ties

Struc-

ture

Hole size distribution

Oversized orifices

• Max. oversized holes allowed <100 ppm

The electroforming process

Electrolyte composition

- Pd complex
- Ni complex
- Conducting Salt
- Additives
 - Stress Reducer
 - Brightener
 - Surfactant

How to control Pd to Ni ratio?

- Altering overpotentials and double layer
 - Changing complex stability (*e.g.* pH, conducting salt)
 - Additives
 - Anode material (e.g. MMO or Pt Ti)
 - Liquid flow

- Learning from theory (e.g. Butler-Volmer)
 - Changing current density
 - Changing temperature
 - Changing concentrations

Why should we control the H₂ reaction?

Hydrogen Embrittlement

• β-phase instable, decomposition leads to stress.

Influence on crystal structure

- By (temporary) incorporation into the crystals
- By preferential adsorption on certain atomic planes and subsequent inhibition of growth of these planes.
- Macroscopic imperfections due to H₂ gas bubbles
- Changes in pH may lead to undesired (electro)chemical processes:
 - Stripping of photoresist
 - Influences on the stability of the metal complexes
 - Metal-hydroxide formation
 - Leading to stress...
 - Or leading to local passivation.

Small differences can have a giant impact

veco[·]

Perfor

Prope ties

Struc-

ture

Proce

Thank you for your attention

mnijland@idexcorp.com

veco[·]

8 June 2025

Veco Corporate Presentation 31