

IMAGING OF LIQUID AND DRY FILM

PHOTORESISTS

- BEST PRACTICES FROM AN IMAGING POINT OF VIEW

SCHMOLL MASCHINEN GMBH DENNIS PUSCH 21.05.2025

Copyright & Confidentiality

The content of this presentation is strictly confidential and is solely for the recipient of the presentation, and may not be reproduced, circulated, or altered without Schmoll Maschinen GmbH express prior permission and applicable acknowledgements. The content of the presentation is intended to present Schmoll Maschinen GmbH's technology and offering and is under no circumstances to be reproduced, copied, or used in any activity which can be viewed upon as breach of intellectual property. Copyright of all material including photographs, drawings and images in this document remains vested Schmoll Maschinen GmbH and third-party contributors as appropriate. Neither the whole nor any part of this document shall be reproduced in any form nor used in any manner without express prior permission and applicable acknowledgements. No trademark, copyright or other notice shall be altered or removed from any reproduction.

schmoll maschinen

OPTRONICS

PCMI SPRING CONFERENCE 2025

Imaging of Liquid and Dry Film Photoresists –

Best Practices From an Imaging Point of View

Presentation by: Dennis Pusch

schmoll maschinen

OPTRONICS

Imaging of Liquid and Dry Film Photoresists – Best Practices From an Imaging Point of View

ABSTRACT

In modern microelectronics and PCM manufacturing, resist materials are critical to the lithography process used to

create and form complex patterns on a substrate.

Two of the most common resist types are liquid resist and dry film resist, each offering specific advantages and

disadvantages depending on the manufacturing process requirements.

While Liquid resist is a liquid form of photoresist applied to the surface of a substrate by spin coating, this technique

enables a thin and uniform coating, making it particularly suitable for high-precision applications.

In contrast, dry-film resist is applied to the substrate in the form of solid films by a heat-depositing lamination process.


This process may be mechanically more efficient and offers greater planarity over larger areas, suitable for applications

where a uniform film thickness is required.

Since photolithography is considered a crucial technology for creating complex patterns and shapes in the chemical

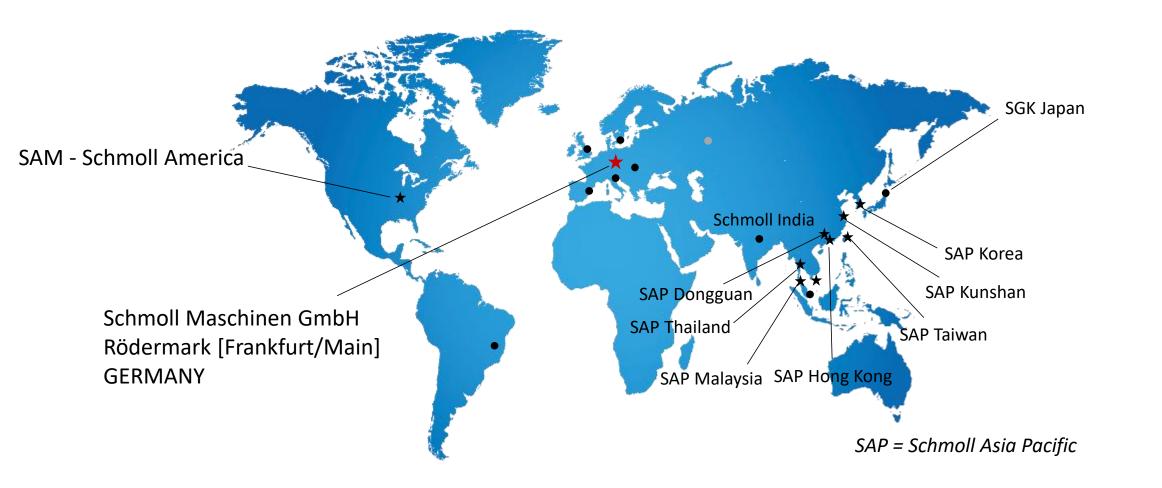
etching or PCM industry, this presentation will focus on a practical evaluation of working with both liquid and dry film

resists using modern direct imaging technology.

SCHMOLL MASCHINEN GMBH COMPANY PROFILE

schmoll maschinen

- Business: Worldwide supplier for PCB/Substrate technology
- Segment: High Quality equipment for Mechanical and Optical PCB processing & related markets & applications
- Location: Rödermark/ Germany [near Frankfurt/Main]
- Employees: Germany over 350, worldwide more than 500
- Capacity: up to 100 Machines/month
- Installation: worldwide 16,500 units
- Founded: 1943 by Heinz Schmoll
 - Company profile: Family business (President Mr. Thomas Kunz)
- PCMI Member: S



SCHMOLL MASCHINEN GMBH INTERNATIONAL FOOTPRINT

schmoll maschinen

OPTRONICS

→ Market presence and **customer proximity**

schmoll maschinen

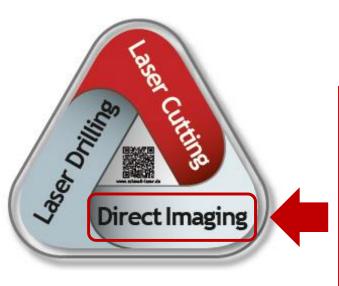
OPTRONICS

Mechanical Micro Machining

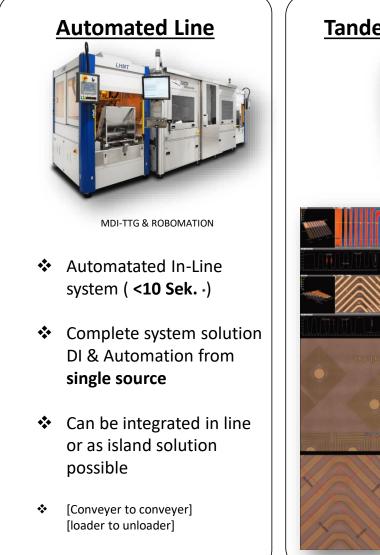
schmoll micronics

Machines:

Drilling/Routing Registration, Punch



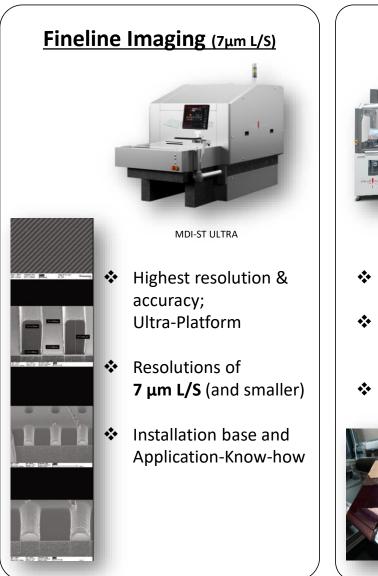
Machines: Laser Drilling & Cutting Direct Imaging


Department: MDI

- Own production facility
- Own software department
- Team of technicians & engineers
- Total: 40 people dedicated to the Direct Imaging product line

SCHMOLL DIRECT IMAGING PRODUCT LINE - HIGHLIGHTS

schmoll maschinen


OPTRONICS

 Multi-Wavelengthssystem for all applications

> 24" = 610 mm 36" = 914 mm 54" = 1371 mm

Reel-to-Reel

MDI-FLEX

- Reel-to-Reel Platform
- Vacuum solution for Flexmaterials
- Autom. Winder & Unwinder

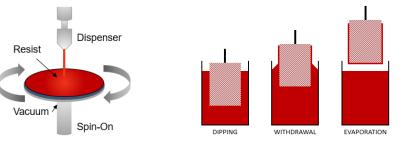
OPTRONICS

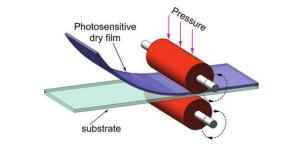
schmoll maschinen

Most critical challenges that PCM manufacturers face affect precision, yield, environmental compliance, and cost-efficiency.

Challenge	Impact	Common Causes
Etch Uniformity	Inconsistent product quality	Poor bath control, resist variation
Etchant Management	Poor process control, waste	Degraded chemicals, oxidation loss
Undercutting	Dimensional inaccuracy	Isotropic etching, long etch times
Environmental Compliance	Legal/financial risk	Hazardous chemical disposal
Cost and Throughput	Higher operational costs	Low yields, inefficient processes
Resolution Limits	Feature size limitations	Mask quality, resist resolution
Photoresist Issues	Pattern defects, rework	Poor adhesion, contamination
Process Scaling	Inconsistent results in mass production	Equipment limits, parameter shifts

Picture: SEM Image - Fine feature design, adhesion loss


Process Control and Uniformity Achieving consistent etch depth and pattern accuracy across the entire surface. Challenge: Uneven etching can cause dimensional errors, poor resolution and consequently product failure Why it matters: Proper adhesion Possible causes: ٠ Variations in photoresist coating or exposure 0 Uneven agitation or temperature in etching bath 0 Inconsistent chemical concentration or flow rate 0 Undercut **Photoresist Adhesion and Integrity** Poor adhesion or defects in the photoresist can lead to pinholes, lift-off, or pattern loss during etching. Challenge: ٠ **Possible solutions:** ٠ Lift-Off Improved surface preparation and cleaning 0 **Optimized** soft bake and **exposure parameters** 0


PCM LIQUID & DRY FILM PHOTORESIST

schmoll maschinen

OPTRONICS

Key difference between liquid resist and dry film resist lies in their **form** and **application method**:

Feature	Liquid Photoresist	Dry Film Photoresist		
Form:	Liquid	Solid film		
Application Method:	Spin coat, spray, dip	Lamination (heat and pressure)		
Surface Compatibility:	Flat and complex surfaces	Flat surfaces only		
Resolution:	Higher	Moderate		
Common Use:	Semiconductor, microfabrication	PCB / PCM manufacturing		
	Can coat non-flat or complex surfaces	Uniform thickness		
ADVANTAGES	Offers high-resolution patterning capabilities	 No liquid handling (→ "cleaner") 		
	 Very thin (1 μm) coating thicknessess possible 	Easier for batch processing and automation		
	 Requires precise control during coating (e.g. spin speed, viscosity) 	Limited to flat surfaces		
DISADVANTAGES	Larger risk of contamination	Typically lower resolution		
	Larger risk of thickness variation			

Content supported by AI

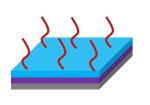
PCM **IMAGING OF LIQUID AND DRY FILM PHOTORESIST**

OPTRONICS

1) Substrate Preparation

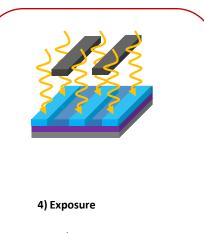
Goal / Purpose:

 Clean surface for resist application

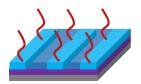


2) Photoresist Application

Goal / Purpose:

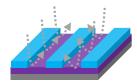

• Coat the surface with uniform photosensitive layer

3) Soft Bake (Prebake)


Goal / Purpose:

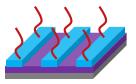
- Remove solvents,
- improve adhesion

Goal / Purpose:


- Create pattern
- Change resist solubility through light exposure

5) Post-Exposure Bake (Optional)

Goal / Purpose:


Improve image stability

6) Development

Goal / Purpose:

- Reveal pattern by dissolving resist
- Remove exposed (positive) or unexposed (negative) areas

7) Hard Bake (Optional)

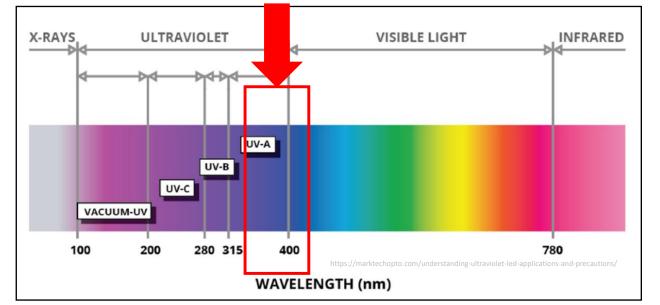
Goal / Purpose:

• Strengthen resist to withstand etching chemicals

8) Chemical Etching

Goal / Purpose: Chemically remove exposed metal/material

9) Photoresist Stripping


Goal / Purpose: Remove remaining

photoresist

PCM LIGHT SOURCE - UV SPECTRUM

The i-line in UV spectrum corresponds to a wavelength of 365 nm, while the h-line corresponds to a wavelength of 405 nm. Both are used in photolithography, a process that uses UV radiation to expose and pattern photoresists. I-line (365 nm) and h-line (405 nm) are also part of the broadband UV spectrum (350-450 nm) which includes the g-line at 436 nm.

OPTRONICS

14

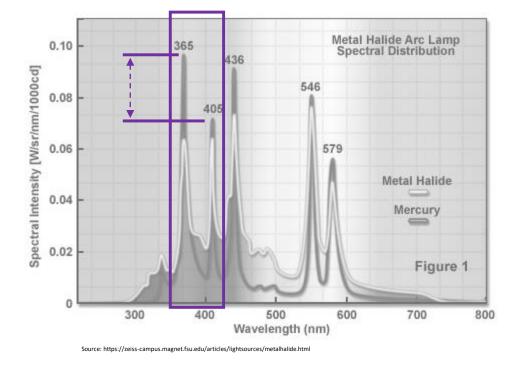
Elaboration:

•i-line: Represents a strong emission peak in the mercury spectrum at 365 nm.

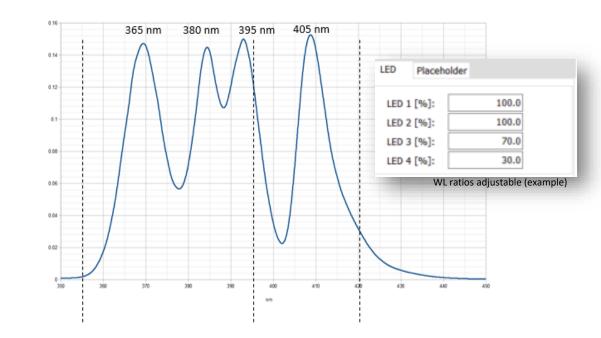
•h-line: Represents another strong emission peak in the mercury spectrum at 405 nm.

schmoll maschinen

Broadband UV: This is a wider range of UV radiation, encompassing wavelengths including the i-line, h-line, and g-line (436 nm).
Photolithography: This process utilizes these UV wavelengths to expose and develop photoresists, which are light-sensitive materials used in the fabrication of microstructures like those found in semiconductor chips and other devices.
UV-LED Sources: In recent years, UV-LEDs have emerged as alternatives to traditional mercury lamps for UV exposure in photolithography.


Aspect	Conventional Exposure (Lamp-based)	Direct Imaging (LED-based)
Light Source	UV lamp (e.g., mercury, metal halide)	High-intensity UV LEDs (often 365/385/405 nm)
Pattern Delivery	Uses photomasks to project patterns	Uses digital files to expose pattern directly
Exposure Mode	Full-field (entire mask area at once)	Pixel-by-pixel (laser or DMD mirror projection)
Energy Control	Broad spectrum; requires filtering	Narrow-band, energy-efficient, wavelength-tuned

PCM IMPACT OF WAVELENGTHS


schmoll maschinen

OPTRONICS

Conventional Exposure tool:

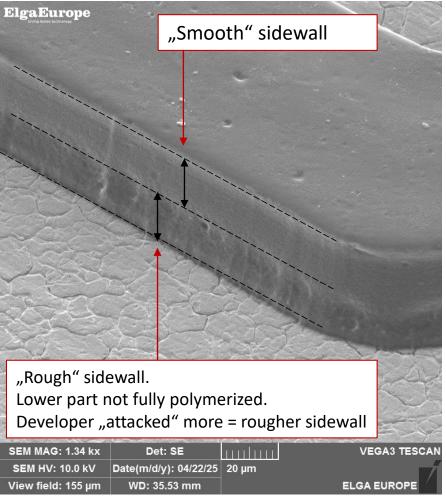
- Peak = i-line (365nm)
- No possibility to adjust
- 365nm "cures" top of resist
- "Closes" top surface of resist
- Bottom not strongly polymerized

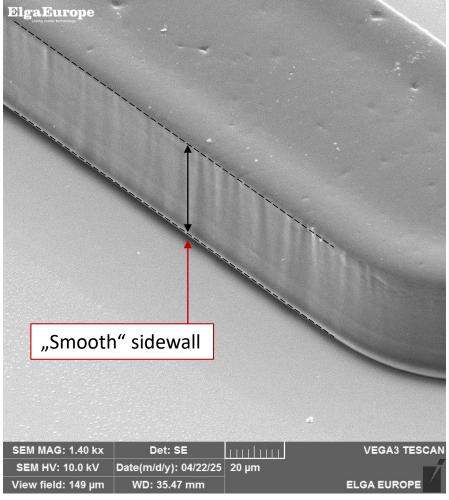
Multi-Wavelength DI-tool:

- Multiple peaks (e.g. 365/380/395/405 nm)
- Adjustable
- Find suitable parameter to "cure" resist top to bottom
- Resist more homogenously polymerized
- Higher flexibility!

DIRECT IMAGING DEVELOPMENTS: LIGHT SOURCE AND RESISTS

schmoll maschinen

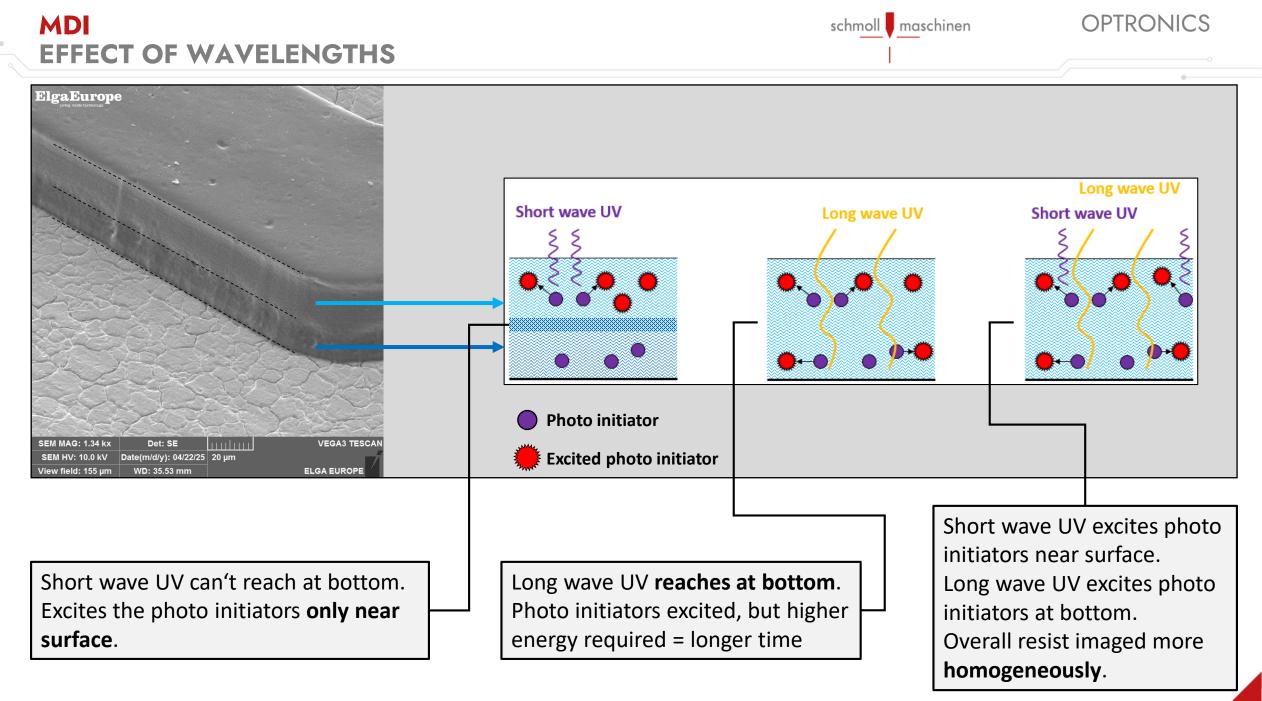

OPTRONICS


Developm	Developments of Materials (Resist)			
Schmoll DI Gen. 1 1 Wavelength Light source: Diode laser Wavelength: 405nm	t	Market participant A-Model 1 Wavelength Light source: Laser Wavelength: 355nm	t	Standard Resist (not specifically designed for Wavelength-Peaks) LDI Resist (355 – 365nm)
Schmoll DI Gen. 2 2 Wavelengths Light source: LED Wavelengths: 365 + 385nm		Market participant B-Model 2 Wavelengths Light source: Laser Wavelengths: 375 + 405nm		
Schmoll DI Gen. 3 4 Wavelengths Light source: LED Wavelengths: 365 + 385 + 395 + 405nm		Market participant C-Model 3 Wavelengths Light source: LED Wavelengths: 365 + 385 + 405nm		DI Resist (broad bandwidth: 365 – 405nm)
Schmoll Fineline 1 Wavelength Light source: Lasercomp. Wavelength: h-line		Stepper D-Model 1 Wavelength Light source: Deep-UV Wavelength: i-line	1) 2)	Existing Liquid films (mostly i-line), high energy High-Res Dryfilm Resists (mostly h-line), lower energy

MDI SIDEWALL OBSERVATION

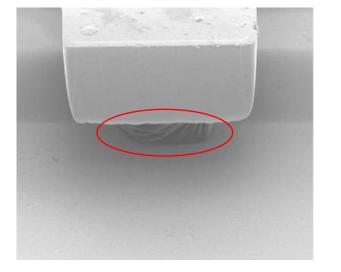
schmoll maschinen

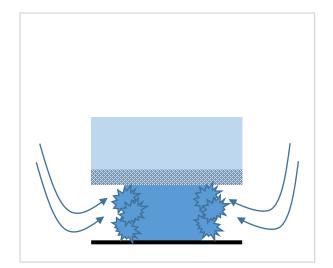
OPTRONICS

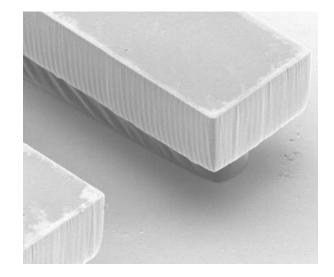


AM150 DI

AF250E


Tests and SEM Pictures in collaboration with **ElgaEurope**

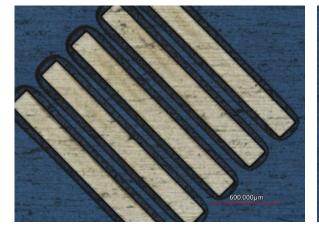



MDI EFFECT OF WAVELENGTHS

schmoll maschinen

OPTRONICS

CONFIDENTIAL

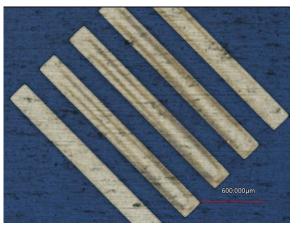


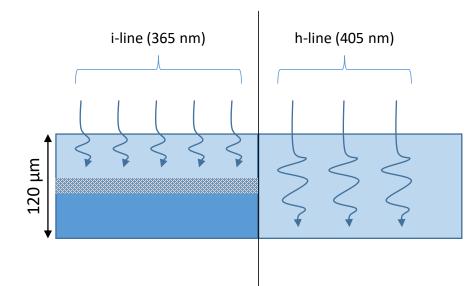
MDI ÊFFECT OF WAVELENGTHS - TEST

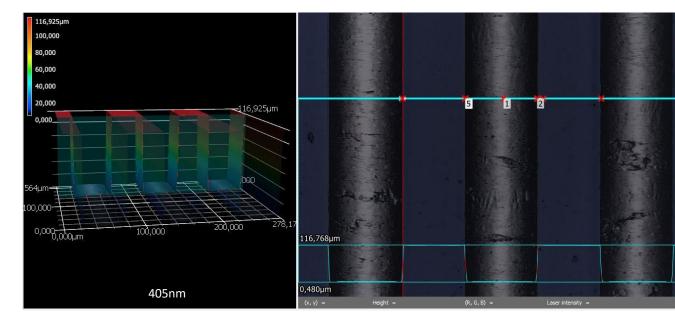
schmoll maschinen

OPTRONICS

"Triple lamination": Resist thickness total = 120 μ m

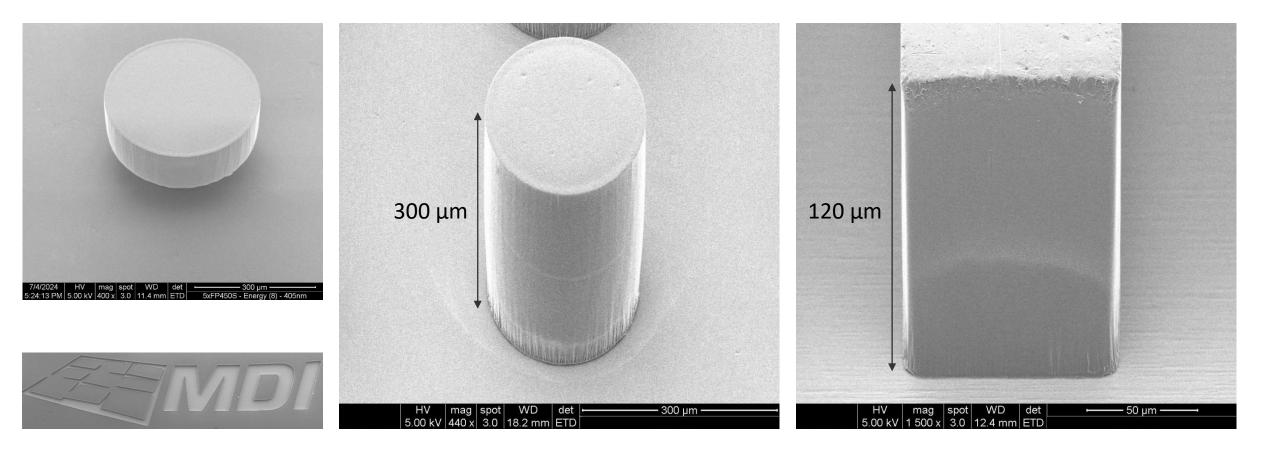

365nm


380nm



395nm

405nm

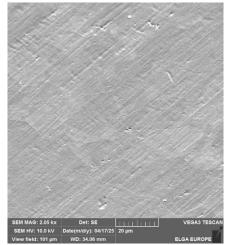


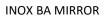
MDI EFFECT OF WAVELENGTHS

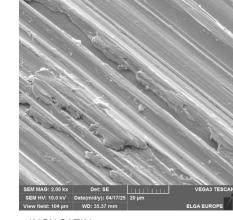
schmoll maschinen

OPTRONICS

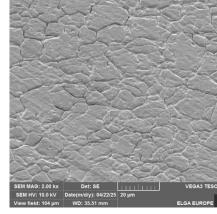
21

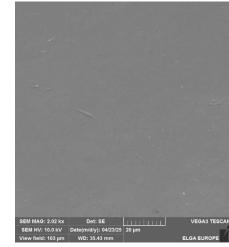

PCM MANY MATERIALS = MANY DIFFERENT SURFACES



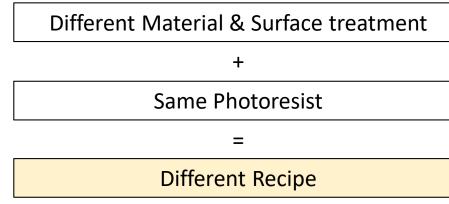

OPTRONICS

Tests and SEM Pictures in collaboration with **ElgaEurope**


Living inside technology

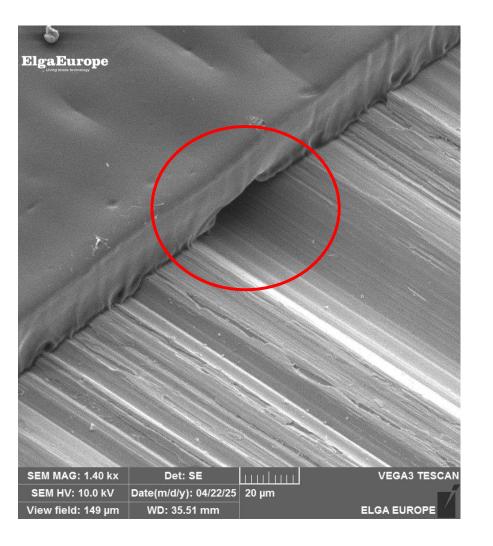


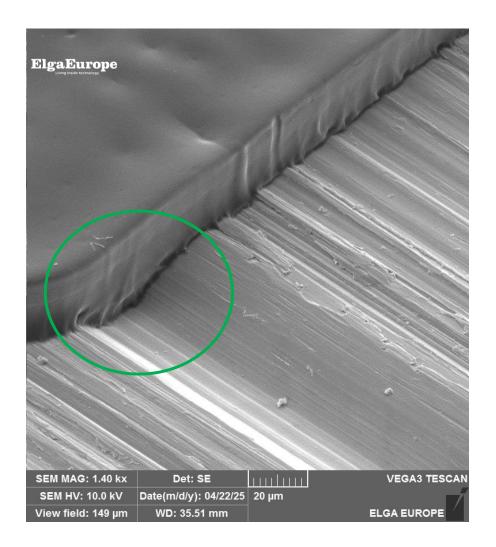
INOX 2B



BRASS

Common Materials Used in Chemical Etching

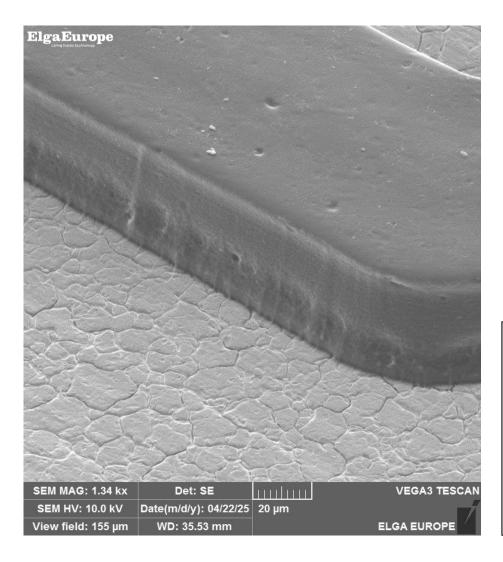

Material	Properties
Stainless Steel	Corrosion-resistant, strong, chemically etchable with ferric chloride
Copper	Highly conductive, easily etched, used with cupric or ferric chloride
Brass (Copper-Zinc alloy)	Good machinability, decorative finish, etches similarly to copper
Nickel	Hard, corrosion-resistant, precise etching with nitric acid or ferric chloride
Aluminum	Lightweight, conductive, etched with nitric acid mixtures
Titanium	Very strong, corrosion-resistant, etched with aggressive etchants (HF-based)
Molybdenum	High-temperature stability, difficult to etch, used with specialized etchants
Phosphor Bronze	Good conductivity and wear resistance
Beryllium Copper	Excellent electrical properties and fatigue resistance
Inconel (Nickel Alloys)	Heat and oxidation resistant, used in harsh environments

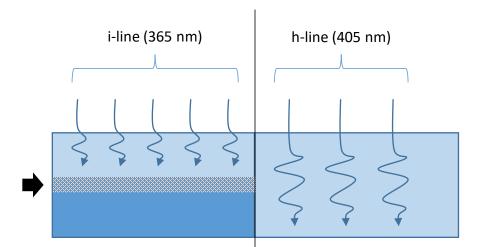


MDI EFFECT OF WAVELENGTHS

schmoll maschinen

OPTRONICS





MDI SUMMARY: EFFECT OF WAVELENGTHS

schmoll maschinen

OPTRONICS

Resist surface "closes" with lower wavelength; "blocks" higher wavelength from penetrating through to the bottom for full polymerization.

Result: Bottom part "weaker" against developer. Leads to rougher sidewall (and undercut) At higher wavelength, the resist is imaged more homogeneously across complete depth. Fuller polymerization leading to smoother sidewall, as developer "attacks" equally.

MDI RESIST IMPACT ON ACCURACY

schmoll maschinen

OPTRONICS

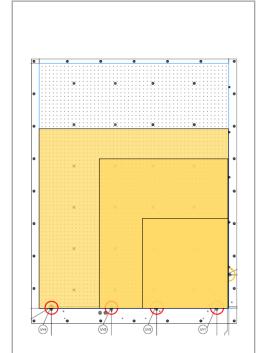
	Q	50	Q			T2		STOP	× U
ducial position overview:	Fiducials:		s	Select Fiducials:	All	Orientation	Global	Local	None
• • • • • • • • •	# ok\?	Туре	found by	desired posi	tion	found position	found size		Ca ^
	199 🖌	global	directly found	(17.499	20.00	(18.501 19	.96 D = 1.595	700 mm	1
	200 ×	global	directly found	(17.499	20.00	(18.503 19	.96 D = 4.498	999 mm	1
	181 ×	global	directly found	(81.388	20.00	(82.390 19	.96 D = 1.595	786 mm	1
	182 ×	global	directly found	(81.388	20.00	(82.395 19	.97 D = 4.498	913 mm	1
	163 X	global	directly found	(145.277	20.00	(146.279 19	.97 D = 1.593	508 mm	1
	164 X	global	directly found	(145.277	20.00	(146.283 19	.97 D = 4.497	817 mm	1
	145 ×	global	directly found	(209.166	20.00	(210.166 19	.98 D = 1.594	895 mm	1
	146 X	global	directly found	(209.166			.98 D = 4.500		1
	127 ×	global	directly found	(273.055	20.00	(274.056 19	.98 D = 1.595	088 mm	1 ~
			1	Apply search	parameters	to all global fiduci	als		
	Tea	ch in	Edit search parameters		Panel	Ĭ	Job	more function	15
			Object	Data:			1.000000 (0 µr	1,111) 1.00000	0 (0µm/m)
()		Scale	0.000 mm / 610.0 mm 0.000 mm 500.0 mm	R	0.0 mm / 61	Offs		•
C)		Scale /	0.000 mm / 610.0 mm 0.000 mm	•	0.0 mm / 61	Offs	et 0.0 mm	•

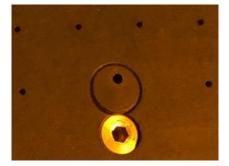
Screenshot: Schmoll MDI User-Interface

Many different alloys, stainless steels, ...

- ... have very different surfaces
- ... have different reflection
- ... have different thermal characteristics
- ... behave differently during lamination (material "moves" more than others)

 → Image control (through optimum recipe + accurate alignment)




 \rightarrow Avoid different profile when etching one side more than the other

MDI COLOR CHANGE ON RESIST FOR UV-MARKER

OPTRONICS

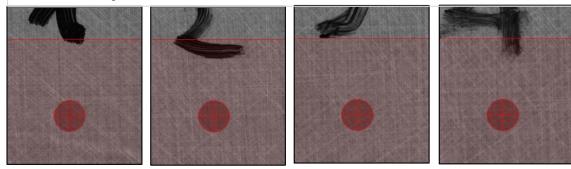
RESIST A DuPont MM120i

*Photo results with phone camera

*Photo results with registration camera on machine

1 time exposure

2 times exposure 3 times exposure

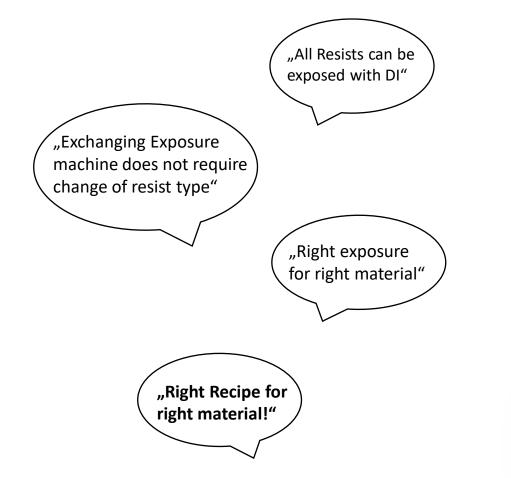

4 times exposure

RESIST B Eternal E9220

*Photo results with phone camera

*Photo results with registration camera on machine

1 time exposure

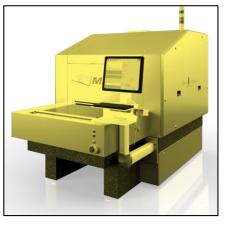

2 times exposure 3 times exposure

4 times exposure

MDI MULTI-WAVELENGTH SOLUTION WITH DI

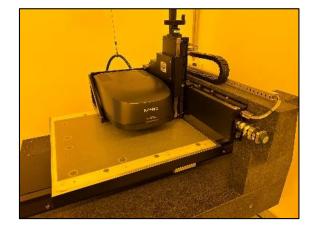
OPTRONICS


Correct choice of Direct Imaging technology can provide a real solution!


27

MDI TEST CAPABILITIES @SCHMOLL

schmoll maschinen


OPTRONICS

Developer (Photoresist)

Laser Microscope stage

Spin Coater & Developer

MDI Imager

• Demo Machine (available with different Photohead resolutions)

- Developer
- Laser Microscope (stage)
- Spin coater for liquid resist
- Developer for liquid resist
- Hot plate
- Equipment to prepare Cross-Sections
- Diverse Resist materials (different thicknesses; standard and high resolution)

Convince yourself – make a test

SCHMOLL MASCHINEN YOUR CONTACT ON THE SUBJECT OF DIRECT IMAGING

schmoll maschinen

OPTRONICS

THANK YOU

MDI THANK YOU FOR YOUR ATTENTION

schmoll	l	maschinen
	-	

OPTRONICS

