The Effects Of Additives On The Physical Properties Of Electroformed Nickel And On The Stretch Of Photoelectroformed Nickel Components

The process of nickel electroforming is becoming increasingly important in the manufacture of MST products, as it has the potential to replicate complex geometries with extremely high fidelity. Electroforming of nickel uses multi-component electrolyte formulations in order to maximise desirable product properties. In addition to nickel sulphamate (the major electrolyte component), formulation additives can also comprise nickel chloride (to increase nickel anode dissolution), sulphamic acid (to control pH), boric acid (to act as a pH buffer), hardening/levelling agents (to increase deposit hardness and lustre) and wetting agents (to aid surface wetting and thus prevent gas bubbles and void formation). This paper investigates the effects of some of these variables on internal stress and stretch as a function of applied current density.